Cooling Holes Inspection with Novacam SurfaceInspect System

Keywords: film cooling holes, cooling air holes, diffuser, trailing edge cooling slots, tip cap cooling holes, blade platform cooling holes, metering hole, rib turbulators, rotor blades, stator blades, drill offset, 3D inspection, defects, dimensions, surface roughness, thermal barrier coating, TBC, non-contact, non-destructive inspection, aerospace, power generation, NDT, robot tools, end-of-arm tooling

Introduction
Film cooling is a key functional aspect of turbine blade design that keeps the temperature of jet engine turbines and land-based gas turbines at an acceptable level. In modern jet engines for example, turbine stage inlet temperatures exceed the melting points of the blade materials. To avert heat-related turbine blade failure, multiple small-diameter holes are drilled into the hollow blades to discharge cooling air from the blade interior onto its surface. These cooling holes are typically machined using lasers, electrical discharge machining (EDM), or, occasionally, electro-chemical machining (ECM).

Since the efficiency of cooling holes depends on their final shape, inclination angle, and spacing, they must pass tight quality controls–both during blade production and during engine reconditioning. Current testing procedures, such as overall air flow measurements through the blade, leave much room for improvement.

Novacam’s SurfaceInspect system now offers powerful capabilities and valuable insight to the cooling holes inspection process. Equipped with a non-contact optical scanner, the system acquires and assesses the 3D geometry of cooling holes in both aerospace and power generation sectors. It does so at high speed, with micron precision, and with unprecedented versatility in terms of setup.

Surface Acquisition
Based on low-coherence interferometry, the SurfaceInspect acquires high-precision 3D topography of surfaces in a point-by-point manner, at the rate of 100,000 points per second. The resulting 3D surface point cloud (e.g., Figure 2) gives micron-precision geometry of surfaces, which can be analyzed for roughness, defects, or any GD&T criteria required by the user.
What Aspects of Cooling Holes Are Important?

Cooling hole geometries have grown more complex over time to improve their functional effectiveness. Scientists and manufacturers are on a constant mission to fine-tune their shape, their distribution, and their inclination angles to optimize engine performance. Micron-level inspection brings significant value to this effort.

On the basic level, the SurfaceInspect system of course confirms the presence and exact location of each cooling hole. However, given the 3D point cloud it acquires, many additional parameters can be determined.

The shape of the diffuser opening, a key aspect of the cooling hole functional efficiency, can be visualized as shown in Figure 3.

A portion of the cooling hole inner diameter (ID) is obtained from the same data set (Figure 4).

The geometrical center and the inclination angle of the through-hole (i.e., the angle of drill penetration through the blade surface) are determined by fitting a cylinder to the acquired portion of the cooling-hole ID (Figure 5).

From the acquired profile, waviness and roughness of the cooling hole bottom surface can be calculated (Figure 6).

When a larger portion of the cooling hole ID is needed than that acquired from a single scan, this can be achieved by progressively adjusting the relative angle of the scanner lens and the blade surface; the resulting ID profiles are then combined into a more complete image of the through-hole.

Finally, dimensional variability of the cooling hole can be assessed by comparing its inner diameter surfaces to the CAD model.
Valuable Process Insight

Due to their complex design and multi-step manufacturing process, turbine blades and vanes are high-cost engine components by the time they reach the stage of being drilled with cooling holes. This in fact is true of all engine surfaces with cooling holes, whatever the industry.

The high cost of these components is why any cooling hole machining issues must be detected and corrected fast—so as to avoid the high cost of scrap at this stage. Examples of machining issues are out-of-spec inclination angles or incorrect offsets between the metering and diffuser sections of the cooling hole caused by drill misalignment. With high-speed and high-precision cooling hole measurements supplied by the SurfaceInspect, manufacturers gain a powerful tool for fast problem diagnosis and mitigation of out-of-spec machining.

Still later on in the engine lifecycle, during engine maintenance and reconditioning, SurfaceInspect provides insight into:

- the type and extent of surface wear or damage to cooling holes caused by engine operation and
- the quality of reconditioned cooling holes.

Tough Enough to Help Automate Inspection on the Plant Floor

Being fiber-based and modular, the optical scanner of the SurfaceInspect (Figure 7) is deployable right on the plant floor—it is not limited to lab environments. As needed, it operates at a distance (as long as several hundred meters) from the profilometer enclosure and is easily integrated as either a robot end-effector or as a vision component in automated or semi-automated systems on the plant floor. It can be integrated as a vision component in CNCs (high-precision EDM/laser drilling machines).

![Figure 7 The SurfaceInspect galvo scanner inspects cooling holes on the outer surfaces of a stator blade (nozzle guide vane).](image)

Notably, the SurfaceInspect scanner enables 3D metrology anywhere, even in harsh (very hot, high pressure, cryogenic, or radioactive) environments.

Cooling holes inside tight spaces? No problem!

Unique in the industry, and unlike any microscope-like instrument, the SurfaceInspect system can also be configured to measure surfaces in hard-to-reach spaces. While the standard galvo scanner that comes with the SurfaceInspect (Figure 7) is the fastest scanning option, a small-diameter rotational scanner can also be added or substituted to acquire cooling holes in tight space such as, for example, on the inner surfaces stator blades (Figure 8).
Conclusion

Engine turbine robustness is of the highest priority in both the aerospace and in power generation industries. In support of this priority, helping ensure the efficacy of engine film cooling mechanism, Novacam’s SurfacingInspect brings important inspection capabilities to the cooling hole inspection process: high precision, high speed, and high setup flexibility.

Typical SurfacingInspect system components are listed below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Physical aspect</th>
<th>Deployment area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroCam-3D or 4D interferometer</td>
<td>19” rack-mountable instrument</td>
<td>plant floor / control room</td>
</tr>
<tr>
<td>computer workstation</td>
<td>mini desktop-size PC or laptop</td>
<td>plant floor / control room</td>
</tr>
<tr>
<td>galvo scanner</td>
<td>surface-scanning galvanometer probe*</td>
<td>on lab inspection stations or directly on the plant floor as:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- robot end-effector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3D inspection instrument in drilling machines, etc.</td>
</tr>
</tbody>
</table>

*For cooling hole inspection inside hard-to-reach spaces, alternative scanners with probe diameters as small as 0.5 mm (0.02”) are available.

Detailed technical specifications are available upon request.

Novacam encourages technicians and engineers in charge of machining and inspecting cooling holes to contact us to discuss your applications and particular challenges.

Novacam Technologies Inc.
277 Lakeshore Road, Suite #04
Pointe-Claire, Quebec, H9S 4L2, Canada

For more information, visit www.novacam.com, email info@novacam.com, or call 514-694-4002 / toll-free: 1-866-694-4002